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U N C L A S S I F I E D

Research Techniques

• PL/Raman/Rayleigh 
scattering measurements 
• Laser: CW/pulsed, ultrafast
• cryogenic measurements
• E-beam/photo-lithography

Photon statistics

TEM/SEM image
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U N C L A S S I F I E D

Mainly Studied Topics
II-VI semicondutor

quantum dots (QDs)
Semiconductor 

nanotubes/nanowires

Single-walled carbon 
nanotubes (SWCNTs)

ZnO nanotubes GaAs QDs in 
GaAsP pillars 

CdSe nanowires
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U N C L A S S I F I E D

QDs Coupled to Surface Plasmons

Ma et al. Nano Lett. 2010, 10, 4166
Ma et al. J. Phys. Chem. Lett. 2011, 2, 2466
Ma et al. J. Phys. Chem. C 2013, 117, 16698

• enhanced PL intensity
• suppressed blinking
• gray states

CdSe NC

• Lifetime decreases 
with d.

• Lifetime is dependent 
on dipole orientation.
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U N C L A S S I F I E D

Semiconductor Nanotubes/Nanowires

Z. Li, X. Ma et al. Eur. J. Inorg. Chem. 2010, 27, 4325
Z. Wang, X. Ma et al. Small 2011, 7, 2464
J. Yoo, X. Ma et al. Nano Lett. 2013, 13, 2134

ZnO NT ZnO NT + Pt (inner)
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Courtesy of Liang
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U N C L A S S I F I E D

PL of Single-Walled Carbon Nanotubes
• Photon Statistics of Individual Carbon Nanotubes at Room 

Temperature

• Oxygen Doping Modifies Excitonic Fine Structures of Carbon 
Nanotubes

• Influence of Exciton Dimensionality on Spectral Diffusion of Single-
Walled Carbon Nanotubes
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Photon Statistics of Individual Carbon 
Nanotubes at Room Temperature

Ma et al. Phys. Rev. Lett. in submission
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Why Photon Statistics?

photovoltaics and solar cells

ACS Nano, 3, 3638–3648 (2009), Aydil et al.

• multiexciton generation rate • single photon source

quantum information

A. Neuzner, MPQ
Nature, 484, 195 (2012), Ritter et al.
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U N C L A S S I F I E D

Second-order Correlation Function g(2):

Hanbury‐Brown‐Twiss Setup

CW laser

Pulsed laser

• g(2): a measure of photon statistics.

(R = Icenter/Iside)
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U N C L A S S I F I E D

Photon Statistics of CNTs: State of the Art

Slide 10

PRL 100, 217401 (2008), Hoegele et al. Nano Lett. 12, 1934 (2012), Stefan et al.

4.2 K 9 K

R < 0.5

photon antibunching

• Photon antibunching: photons are separated from each other.
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U N C L A S S I F I E D

Photon Statistics of CNTs: Mechanism

Slide 11

Low T Room T

localized exciton: 
• exciton – exciton annihilation 
(EEA)

diffusing exciton: 
• exciton – exciton annihilation 
(EEA) 
• exciton diffusion

kdiffkdiffkEEA kEEA

How exciton diffusion and EEA affect photon 
statistics in 1D system?
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U N C L A S S I F I E D

Individual SWNT Imaging

Slide 12

PL blinking/fluctuationStable PL

• Homogeneous illumination of the whole SWNTs with expanded laser beam
• Beam size: ~60 x 60 um
• SWNT length: <15 um

Wide field images

Laser

SWNT sample
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U N C L A S S I F I E D

Individual SWNT Imaging
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Wide field image width (@1/e2) 
= 635 nm

L ~ 4.2 um 

• Fitted with a Gaussian function
• Diffraction limited

Along the tube axis

Perpendicular to the tube axis
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U N C L A S S I F I E D

Gaussian Laser Spot

Slide 14

1 µm
• Fitted with a Gaussian function
• Diffraction limited
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Excitation power (nW)
• Beam size independent of power.
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U N C L A S S I F I E D

Excitation Power Dependent PL images

Slide 15

• 985.51 nm, 17.7 nm
• Fitted with a Lorentz function
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• elongated PL image
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U N C L A S S I F I E D

PL Intensity Profile
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• width > point spread function
• due to exciton diffusion 
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• Profile width changes with 
excitation power.
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U N C L A S S I F I E D

1D Diffusion Equation

diffusion length exciton-exciton
annihilation coefficient

Intensity profile decay curve

n(
x,

t’)

n(
x,

t’)

n(
x,

t’)
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Fitting Intensity Profiles

• diffusion length LD
• EEA coefficient C

Slide 18
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U N C L A S S I F I E D

kdiffkdiff kEEA

Exciton Diffusion Exciton‐Exciton Annihilation

• Larger diffusion length/rate 
 less efficient exciton-exciton annihilation 
 smaller C

Gaussian
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U N C L A S S I F I E D

Excitation Power Dependent g(2) Measurements

• R increases with increasing excitation power.

minimum antibunching degree 
R0

Area ratio:
R = Icenter/Iside
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U N C L A S S I F I E D

R0diffusion length LD
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U N C L A S S I F I E D

Minimum Antibunching Degree R0

Q2X: emission efficiency of two excitons
Q1X: emission efficiency of one exciton
m: d/LD

beam diameter d beam diameter d

LD > d    R0 = Q2X/(mQ1X) LD < d    R0 = (m-1)/m

diffusion length LD 

Q2X

LD LD 

• Section of SWCNT behaviors like 
a QD.

• Excitons behave like independent 
emitters.
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U N C L A S S I F I E D

R0Diffusion Length LD

R0 = (m-1)/m
R0 = Q2X/(mQ1X)

R0 = Q2X/(mQ1X)+(m-1)/m
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U N C L A S S I F I E D

Summary
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U N C L A S S I F I E D

Oxygen Doping Modifies Excitonic Fine 
Structures of Carbon Nanotube

Ma et al. ACS Nano in submission
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U N C L A S S I F I E D

Photoluminescence of SWCNTs: Application

field-effect transistor
Cao et al. Nature Mater. 2005, 4

sensor
Kruss et al. J. Am. Chem. Soc. 2014

biological imaging
Welsher et al. Nature Nanotech. 2009

light emitting diode
Wang et al. Nano Lett. 2011, 11
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U N C L A S S I F I E D

Photoluminescence of SWCNTs: Limitation
External factors Intrinsic factors

• single layer structure
• structural defects
• adsorbate molecules/atoms

(S. Maruyama)
• dark states below the first bright state

Spataru et al. Phys. Rev. Lett. 2005

Kiowski et al. Phys. Rev. Lett. 2007

Slide 27



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA
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Controlled Doping of SWCNTs

Slide 28

oxygen doping

diazonium salt dopingGhosh et al. Science 2010

Piao et al. Nature Chem. 2013

• additional bright, red-shifted peak

Miyauchi et al. Nature Photon. 2013
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U N C L A S S I F I E D

Individual SWCNT Imaging at Low Temperature
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Wide field image

Laser

SWNT sample

• diffraction-limited localized emission

cryostat

5 um
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U N C L A S S I F I E D

Individual Pristine SWCNT

Slide 30

• individual symmetric (88%) peak at ~ 1.25 eV → E11
• linewidth: 4.4 meV
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U N C L A S S I F I E D

Individual Oxygen‐Doped SWCNT

Slide 31

• spectral splitting of E11 peak  2 to 3 peaks (70%)

E11E11
* E11E11

- E11E11
- E11

-

• additional red-shifted peak  E11
*
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Time Evolution of E11 peak
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• stable peak position and intensity • spectral splitting

E11

E11
-

E11
-
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Line Shape of E11* Peak

Slide 33

• asymmetric peak with long tail at the low energy side (83%)
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U N C L A S S I F I E D

Line Shape of E11* Peak

• due to coupling between localized exciton and 1D phonon
• E11

* exciton is highly localized.

Krummheuer et al. Phys. Rev. B 2002

Galland et al. Phys. Rev. Lett. 2008 localized exciton

1D phonon
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Additional Peaks

• Both A+ and A- are asymmetric with long tail at the low energy side.
• A+ and A- excitons are also localized.

E11E11
* A- E11E11

*A+
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U N C L A S S I F I E D

Quantum Chemistry Computations

• Length of tube: 8 nm
• l: along tube axis; d: perpendicular to tube axis
• Geometry optimization: semi-empirical method (AM1 Hamiltonian, 

MOPAC program)
• Oscillator strengths and transition densities: Time-dependent Density 

Functional Theory (Gaussian 09, STO-3G basis set, B3LYP functional). 
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Comparison between Experiment and Simulation

E11
-

Slide 37



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA
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Exciton Transition Density

E11

E11
*

A+

A-
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• asymmetric lineshape 
 localized exciton

• symmetric lineshape 
 delocalized exciton
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U N C L A S S I F I E D

Intensity Correlation between E11 and E11* peaks

• PL intensities of E11 and E11
* peaks 

are negatively correlated.

E11

E11
*

E11
-

E11

E11
*

E11
-
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Excitonic Fine Structures

• Oxygen doping introduces potential wells localizing excitons.
• Potential fluctuation leads to negative intensity correlation between 

E11 and E11
* peaks.

E11
*

A+

A- A-E11
- E11

- E11
-E11
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Summary

• spectral splitting of E11 peak
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• asymmetric E11
*, A+, and A- peaks

• negative intensity correlation 
between E11 and E11

* peaks
• excitonic fine structures of 

oxygen-doped SWCNTs
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Influence of Exciton Dimensionality on 
Spectral Diffusion of Single-Walled Carbon 

Nanotubes

Ma et al. ACS Nano in submission
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Spectral Diffusion of SWCNTs

Ideal spectra Real spectra

• Quantum information processing requires spectral-diffusion free 
emission  physical mechanism behind spectral diffusion 
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PL spectra of Individual SWCNTs at 4K

sub-linear
correlation

5s per each spectrum

red-shift

broader 
spectrum
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Quantum-confined Stark effect (QCSE)

CdSe QDs
(Bawendi, Science 97)

CdSe/CdS nanorods
(Weller, PRL 2004)

CdSe/ZnS nanorods
(Banin, Nano Lett. 2005)
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U N C L A S S I F I E D

SWCNTs at Cryogenic Temperature 

localized emission complete antibunching

• Excitons in SWCNTs at 4K is localized to QD-like excitonic states.
 sublinear correlation between linewidth and peak shift.

Hoegele et al. Phys. Rev. Lett.  2008

4K4 K
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PL spectra of Individual SWCNTs at RT

Exciton in SWCNT is diffusive at RT. 
Can we still observe QCSE?

super-linear
correlation

red-shift

broader 
spectrum
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Exciton Dimensionality ↔ Correlation Coefficient

RT
exciton 1D

Superlinear
correlation 

4K
exciton 0D

sublinear
correlation
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Single Point Charge Model
For a SWCNT at low electric field, an energy shift of the binding energy (     ) 
caused by QCSE can be described by:

If we use a Gaussian stochastic model to describe spectral diffusion behavior:

At time t=0 we obtain

In a simple assumption, we assume that there is an external point charge  
located on the surface of a SWCNT that creates a local electric field:

E

2

b
( )edFE k

E
 

E
F

bk

e: electron charge     d: tube diameter
: tube binding energy at zero field
: electric field induced by surface charges
: constant

/2( )( ) ( )(0) ct tE t E e      : spectral broadening in meV

2 2( )(0)E  

24
qF

r
 ε: permittivity of the surrounding environment

r: exciton-charge distance 

+
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Single Point Charge Model
At cryogenic temperature:

• Excitons are localized to quantum-
dot-like states.

• Exciton-charge distance r and local 
environment permittivity ε: constants.

• Exciton binding energy fluctuation is 
mainly induced by fluctuations in 
surface charges:

2

1
4

F q
r

 




E  

+
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Single Point Charge Model
At room temperature:

• Excitons are diffusive (~100 nm).

• Large fluctuation in exciton-charge 
distance r.

• Contributions of surface charge/dielectric 
environment fluctuation become 
negligible.

+

3

2
4

qF r
r

 


 

5/4E  
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SWCNTs Coupled to Surface Plasmons

ߪ ∝ ܧ߂

exciton “localization” 
at room temperature

SEM PL image
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Numerical Simulations

• highly confined excitation regine (<30nm)

• strongly enhanced decay rates in the gap 
chance of exciton diffusion greatly decreased.
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Summary

+ +

E  
5/4E  

4K RT

exciton: 0D exciton: 1D

ߪ ∝ ܧ߂
exciton: 1D
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Current Project
Realization of Telecom Range (1300 - 1550 nm) Single Photon Source 
from SWCNTs at Room Temperature

• Air stable oxygen-doped SWCNTs

• Photon statistics of 1100 nm and 1300 nm peaks
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